A Universal Deformation Formula for Connes-moscovici’s Hopf Algebra without Any Projective Structure
نویسندگان
چکیده
We construct a universal deformation formula for Connes-Moscovici’s Hopf algebra without any projective structure using Fedosov’s quantization of symplectic diffeomorphisms.
منابع مشابه
Cyclic cohomology of Hopf algebras, and a non-commutative Chern-Weil theory
We give a construction of Connes-Moscovici’s cyclic cohomology for any Hopf algebra equipped with a character. Furthermore, we introduce a non-commutative Weil complex, which connects the work of Gelfand and Smirnov with cyclic cohomology. We show how the Weil complex arises naturally when looking at Hopf algebra actions and invariant higher traces, to give a non-commutative version of the usua...
متن کاملBicrossproduct approach to the Connes-Moscovici Hopf algebra
We give a rigorous proof that the (codimension one) Connes-Moscovici Hopf algebra HCM is isomorphic to a bicrossproduct Hopf algebra linked to a group factorisation of the diffeomorphism group Diff(R). We construct a second bicrossproduct UCM equipped with a nondegenerate dual pairing with HCM. We give a natural quotient Hopf algebra kλ[Heis] of HCM and Hopf subalgebra Uλ(heis) of UCM which aga...
متن کاملHopf Algebras in Noncommutative Geometry
We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic coh...
متن کاملSecondary Characteristic Classes and Cyclic Cohomology of Hopf Algebras
Let X be a manifold on which a discrete (pseudo)group of diffeomorphisms Γ acts, and let E be a Γ-equivariant vector bundle on X. We give a construction of cyclic cocycles on the cross product algebra C∞ 0 (X)o Γ representing the equivariant characteristic classes of E. Our formulas can be viewed as a higher-dimensional analogue of Connes’ Godbillon-Vey cyclic cocycle. An essential tool for our...
متن کاملOn the Connes-Kreimer construction of Hopf Algebras
We give a universal construction of families of Hopf P-algebras for any Hopf operad P. As a special case, we recover the Connes-Kreimer Hopf algebra of rooted trees.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008